
Source of Acquisition
NASA Ames Research center

ss

Jay Trimble 'and Joan Walton
NASA Ames Research Center, Mofert Field, CA 94035

and

Harry Saddler
QSS/NASA Anzes Research Center, Moffett Field, CA 94035

I. Introduction
urrent mission operations systems are built as a collection of monolithic software applications. Each application C serves the needs of a specific user base associated with a discipline or functional role. Built to accomplish

specific tasks, each application embodies specialized functional knowledge and has its own data storage, data
models, programmatic interfaces, user interfaces, and customized business logic. In effect, each application creates
its own walled-off environment. While individual applications are sometimes reused across multiple missions, it is
expensive and time consuming to maintain these systems, and both costly and risky to upgrade them in the light of
new requirements or modify them for new purposes. It is even more expensive to achieve new integrated activities
across a set of monolithic applications.

These problems impact the lifecycle cost (especially design, development, testing, training, maintenance, and
integration) of each new mission operations system. They also inhibit system innovation and evolution. This in turn
hinders NASA's ability to adopt new operations paradigms, including increasingly automated space systems, such
as autonomous rovers, autonomous onboard crew systems, and integrated control of human and robotic missions.

Hence, in order to achieve NASA's vision affordably and reliably, we need to consider and mature new ways to
build mission controi systems that overcome the problems inherent in systems of monolithic applications. The keys
to the solution are modularity and interoperabilify. Modularity will increase extensibility (evolution), reusability,
and maintainability. Interoperability will enable composition of larger systems out of smaller parts, and enable the
construction of new integrated activities that tie together, at a deep level, the capabilities of many of the components.
Modularity and interoperability together contribute to flexibility.

The Mission Control Technologies (MCT) Project, a collaboration of multiple NASA Centers, led by NASA
Ames Research Center, is building a framework to enable software to be assembled from flexible collections of
components and services.

11. Background
The need for MCT became apparent during software development, user observation, and user requests from the

Mars Exploration Rover (MER) mission operations technology infusion projects, in which Ames and the Jet

Computer Scientist, Intelligent Systems Division, NASA Ames Research Center Moffett Field CA USA 94035
Insert Job Title, Department Name, AddressMail Stop, and AIAA Member Grade for second author.
Inser t Job Title, Department Name, AddressMail Stop, and AIAA Member Grade for third author.

2

Propulsion Laboratory (JPL) collaborated to deploy software into MER operations. The software for mission
operations is, of necessity, designed based on requirements that are specified several years before launch. By the
start of training, the software gets its fxst serious shakedown in a realistic operations setting.

During training, we leam better ways to operate. Processes are improved, new features are added, and existing
features are changed. However, it is too late to make any significant changes to software by this point, leaving labor-
intensive operational workarounds, add-on applications, scripts, and other “glueware” patches to software as the
only options for improvement. In several cases during training and operations for MER, users requested integration
of new hnctionality, but the limitations of current software technologies prevented us from being able to meet these
requests.

A. Current Practice: Predetermined Functional Groupings
Current software development practice creates predetermined functional groupings of features which are

presented to the user as applications, which operate as their own sealed-off worlds. Data interoperability is limited
and is achieved through file transfers or cut-and-paste operations through clipboards. Reconfiguration is only
possible through upgrades and re-release, limited user interface customizations, or the addition of plu, =-ins. ‘

Fundamental reconfiguration to match evolving processes and workflow is not possible.

Updated fMs i f k wit& ~~~~~-~~~~~~~ om:

Figure 1 illustrates these isolated worlds.

Figure 1.
interoperability take place across “walls,” in this case in the form of file transfers.

Traditional application development with monolithic applications. Communication and

Figure 2.
developed across centers

Duplication of functionality and inconsistent user interfaces in MER Ground System tools,

Since monolithic, isolated applications cannot easily be used together, it becomes necessary to add similar
features to each; over time these applications thus tend to become bloated with inconsistently duplicated features,
adding to the difficulty of using and maintaining them. Another by-product of this process is inconsistent user
interfaces, which creates added risk of operational errors and increases training time for operations personnel.

B. Related Industry History
There have been attempts to develop software that is not composed from large, walled-off monolithic chunks.

Dating back to original and well-known research at Xerox PARC that led to the modern computing era, the
Smalltalk language organized functionality into objects; new features and capabilities were added dynamically
simply by adding new objects. There were no applications as we know them today. The Xerox Star, the first
commercially available computer with a graphical user interface, had a purely object-oriented desktop and
compound documents. These systems were created at a time of limited hardware performance, which limited
software design options.

Subsequently, Apple Computer and IBM collaborated on a project calied OpenDoc. OpenDoc was an attempt to
replace applications with a document-centric approach wherein functional, content-bearing objects, or “parts,” could
be assembled into fully fbnctional “documents.” Figure 3 shows the OpenDoc concepts of building documents from
“parts” and “editors,” contrasted with monolithic applications.

Figure 3. OpenDoc and Monolithic Applications Compared

It was these projects from industry, combined with our experience on the MER Project, that inspired MCT. We
started with a simple idea: instead of building software from monolithic applications, build components that can be
easily assembled and recombined as needed to meet user, task, and mission requirements. Such components could
be composed to create complex, task-specific compositions, replacing traditional applications. By making the
components composable, we can achieve interoperability, including the capability to combine components
developed across organizations. Modularity and flexibility are achieved by making components fme-grained. This
allows for flexible reconfiguration of composable components, even after the start of training and operations. Figure
4 shows the MCT concept of assembling applications and operational environments from components on top of a
supporting framework.

Operational
environments

L .-
Composable
applications

Figure 4. MCT applications and environments are assembled from components.

III. MCT Architecture and Frameworks
MCT consists of a system architecture that supports the deployment and use of distributed fine-grained

components; a user interface architecture that helps users create, manage, and understand mission data, and to
organize their tools to suit their tasks and preferences; a set of frameworks enabling the development and operation
of components; and information models that support component interoperability . This infrastructure is implemented
in part as a set of plug-ins atop the Eclipse open source development platform (see www.eclipse.or@

A. An Architecture for Composable User Interfaces

Background
A well-known and time-tested user interface architecture is the model-view-controller (MVC) design pattern.

MVC, invented at Xerox PARC in the early ~ O ’ S , has evolved over time, and is still in use today. The fundamental
idea is to create flexibility in software development by separating the presentation of the interface to the user from
the underlying model, i.e. separate the user interface front end (view) from the application backend (model) and the
input which is handled by the controller. As a simple example consider data accountability as shown in figure X.

<Figure X - insert diagram showing accountability model, with multiple views and a controller>

Whaf did you have in mind for fk~ure X?

In “traditional” object oriented architectures, the fundamental building blocks are objects. In the MCT
architecture, the fundamental building block is a component. MCT components are objects with a number of
additional characteristics supporting flexibIe reuse, the ability to compose user interfaces during run-time, and the
use of information models to control system behavior. In MCT, a component may be presented to the user in
different ways through representations which serve as the components’ user interfaces. One component may have
multiple representations; this both increases component reuse and allows the same component to be used in multiple
locations, which improves consistency and enables remote collaboration. So far we have the capability to build a
component and show it in different ways (representations) and locations (distributed components).

, J

In the MCT architecture, components have roles which define the attributes and behaviors of components in
accordance with the information model. MCT also uses composition policies to specify the kinds of compositions
that can be created, and the interaction between components in a composition.

Some changes at &:he end of this paragraph

Now, let’s look at how that accountability model would look in the MCT architecture. Figure X shows two
compositions that were assembled for different purposes; one to track data accountability, and the other to examine
scientific data. The bar chart bars, list of images, and the thumbnail image are all representations of the same kind of
component - a science dataproduct. The user is able to “inspect” the bar to see what dataproducts contribute to it,
and then view individual data products; this sort of exploratory capability is inherent to all components because in
MCT a component is always “live.” Unlike current environments where documents are assembled from multiple
pieces that are cut and pasted in, MCT compositions are assembled from components that may be edited in place at
any time.

Figure 6. Exploring data using multiple representations

100 0". 1m.m

YO 0% 50 0%

0 0% 0 0%

100 0% loo 0%

50 0% 50 0%

0 0% 0 0%

103 0% 100 0%

50 PI. M 0%

0 0% 0 0%

Meted Volume

100.0% 1W.O%

50.0% 50.0%

0.m 0.0%

Figure 7.
Fi,we X and Y show data accountability representations from the 2005 pilot built in collaboration with JPL. The
pilot showed the capability to build composable systems on top of Eclipse and connect to existing services and data
sources.

Data accountability representations from the 2005 pilot

Figure 8. Representation detail from the data accountability pilot shown in Fig. 7

Added ~~~~~~~~~ paragrzph:

Another example of multiple represenentation in MCT is in the way it can present collections. A collection is simply
a set of components. Collections are of3en displayed as lists, but depending on the type of components in the
collection (and the user's task), may be presented in other ways. Figure 10 shows a coIlection of rover activities
shown as a filterable list, perhaps being used to quickly find related activities, and as a timeline which shows and
manages the temporal relationships among the activities, in this example being used to create rover command
sequences.

cotleaion with list tqxt?sentation

Figure 9. Examples of representations and collections

ad-hoc collection '

B. Information Models
MCT uses information models, in the form of ontologies, to support component interoperability. To quote

Pollock and Hodgson [insert ref.], "Interoperability . . . means using loosely coupled approaches to share or broker
software resources while preserving the integrity and native state of each entity and each data set." MCT
components are designed to be separately engineered, validated, and deployed, but capable of intelligently
interacting. At the scale envisioned for MCT, component integration-where components are assimilated into a
larger whole through tight bindings such as APIs-would be unmanageable and undesirable. Instead, connections
between components are captured in ontologies, which can express any number of relationships. In MCT,
information models capture domain knowledge about the "real-world'' information that is being displayed or
manipulated by the component (data types, categories, translators, units, groupings, etc.) Information models are
also employed to describe system aspects such as services, structure and content of messages, and composition
policies. With this information represented explicitly, rather than implicitly in the form of method names and
argument lists, the MCT frameworks can incorporate various inferencing techniques to guide the behavior of the
components based on the information models.

N. Prototypes and First Pilot
In 2005, the MCT Project developed both initial prototypes and a pilot application. The purpose of the prototype

was to test the component model and user interface architecture across a representative set of applicable domains.
YV G chose telemetry, FrOCe&Gies, zd p!amkg. The p q o s e ~f the p i b t was te build the erst wcxk i~o T7pTcinn .I.".-.. nf VL

what will evolve into the deployed mission framework, and to build an application and connect it to mission data.
P L T -

A. The Preliminary Conceptual Prototype
A preliminary prototype for exploring fundamental MCT concepts was built using Squeak, a variant of Smalltalk

(see www.squeak.org). Whereas the pilot effort focused on a narrow set of functionality in depth, this prototype
focused on a broad set of functionality but did not go into depth in any particular area. We started with the
hndamental idea that the user should not have to start an application or be restricted by any set of predetermined
inflexible functionality. Rather, the user would be presented with a component repository, or a user environment,
from which compositions may be put together.

Figure 10. A simple composed plan

Kepiace fig. I O with a better figure

The pilot validated the capability of the MCT component model to build compositions crossing different domains,
including planning, telemetry and procedures. We built components and representations for timelines, activities,
telemetry data points and procedural elements. We were able to combine them to meet not only current system
requirements for such systems, but also in ways not possible with current systems.

Fieme 10 shows the prototype component repository and a simple plan composition. The plan is composed of a
timeline - a simple component that meets a near universal space mission requirement to show data in a time-based
graphical representation, activities and a plan within a plan. The composition was created by dragging and dropping
components from the repository. This composition is much like a traditional timeline. However, many more
combinations are possible. The plan may have as many or few timeline components as needed. Any piece of data
with a time representation may be embedded in any part of the plan. Any component in the plan may be displayed as
part of another composition, such as a users notebook. Non-time based respresentations, such as sticky notes, may
also be embedded in a plan, depending on composition policies as implemented by the mission. A representation
may appear in multiple locations in the plan, or in other collections and compositions. Extension to multiple
locations is possible.

Figure 11. Telemetry and Procedures composition for ISS

C. The Accountability Pilot
Figures 7 and 8 show the pilot application built and composed in 2005. Unlike the prototype, the pilot focused on

depth, rather than breadth, and was required to connect to real data source. We chose data accountability, as that
built on previous work conducted with the Jet Propulsion Laboratory (JPL), and provided an adaptable service and
data source. The pilot successfully demonstrated the capability to build composable components on top of Eclipse,
and it provided the basis upon which we are building the deployable infrastructure in 2006. Figure 9 shows the
underlying representations on which the display in figure 9 is built. Each representation is a composable unit.

V. Scheduling and Telemetry Monitoring Pilot
In 2006, our focus is shifting toward supporting the vision for space exploration. We are maturing the

frameworks towards a first deployment for developers and working with partners at JPL and the Johnson Space
Center (JSC) on designing the first composable systems. Our domain focus for 2006 is telemetry and monitoring.
We are building on our initial conceptual explorations, preliminary architecture, and initial component set to design
and implement components for spacecraft telemetry monitoring. These will combine to create flexible monitoring
“views” to be used by an initially limited subset of ISS mission control positions. These views will integrate a
variety of data sources and types of information display, and demonstrate the use of components and composition
for assembling both user-specific and position-specific views. The components themselves will permit user-driven

composition and customization, ready exploration of data relationships, and highly flexible, on-the-fly combination
of components to assist flight controllers in understanding telemetry values and analyzing the causes of events.

Error! Reference source not found. is a mockup illustrating the variety of components to be implemented, and
a composition that might be created using them. Note that nearly every one of the elements in this user interface is a

Figure 12. Telemetry monitoring components

Error! Reference source not found. is a mockup showing a number of planning and scheduling components,
also in development for FY06. Note that it includes a telemetry item whose value is plotted on the same time scale
as are the schedules. Conversely, the previous mockup (Fig. 16) includes a schedule rendered according to the same
time scale as the telemetry plot it is composed with. Both of these can be accomplished simply by dragging the items
together. These examples illustrate the degree of dynamic component interoperability that MCT makes possible. -.

. .,..
.,,. ; ,.:,. _... "i .. ' :@

Figure 13 Planning and Scheduling Components

VI. Conclusion

We have demonstrated the capability to build infrastructure and components to create composable systems. In
2006, working with our partners at JSC, Marshall Space Flight Center (MSFC), Goddard Space Flight Center
(G3FC) and JPL, we are building composable systems in the planning domain (with JPL), and telemetry and
monitoring (with JSC, MSFC, GSFC). We expect initial availability of the framework for developers to be at the end
of 2006. At that point, we will be able to test the concept of assembly of ground systems from components
developed by multiple organizations and multiple locations across many operational domains.

